Note on Latent Roots and Vectors of Segments of the Hilbert Matrix

By H. H. Denman and R. C. W. Ettinger

As a by-product of work on condition numbers, maximum and minimum latent roots, and the corresponding vectors, have been calculated for the Hilbert segments of orders $4,6,8$, and 10 , to about 17 significant digits.

This supplements the data of Fairthorne and Miller [1] by including minimum latent roots and corresponding vectors, and increasing the accuracy. It also verifies their data (after rounding) except that one error was found (see next paragraph) in their published results.

A Hilbert segment of order N is the matrix $\|1 /(m+n-1)\| ; m, n=1, \cdots, N$. Let H represent a Hilbert segment, T its inverse, λ a latent root, and V a corresponding vector. Then, e.g., $\lambda_{1}\left(H_{6}\right)$ is the largest latent root of the segment of order $6 ; V_{N}\left(T_{6}\right)$ is the vector corresponding to the smallest latent root of the inverse of H_{6}. The error in Fairthorne and Miller's article occurs in the third element of $V_{1}\left(H_{6}\right)$.

The power method [2] was used, with a double-precision floating-point routine on the IBM 650. Smallest latent roots were obtained as $\lambda_{N}\left(H_{N}\right)=1 / \lambda_{1}\left(T_{N}\right)$, and verified (to as many significant figures as the method allows) by direct calculation of $\lambda_{N}\left(H_{N}\right)$ by the power method, $\lambda_{N}(H)$ being obtained as $\lambda_{1}(H-p I)$, where I is the identity matrix and p is slightly greater than $\lambda_{1}(H)$. The N th vectors are given as $V_{N}\left(H_{N}\right)=V_{1}\left(T_{N}\right)$, because the method gives greater accuracy here for V_{1} than for V_{N} and because T has no input error.

Terminal digits are uncertain by not more than one, as indicated by convergence rates.

$\lambda_{1}\left(H_{4}\right)$		$\lambda_{N}\left(H_{4}\right)$			
1. 50021	428005924281$V_{1}\left(H_{4}\right)$	10^{-4}	$\times 0.96702$	3040225868	861
				$V_{N}\left(H_{4}\right)$	
1.			0. 03688	7682614141	047
0. 57017	208366323583		-0.41534	9287780311	17
0. 40677	898802752924		1		
0. 31814	096887379396		-0.65017	1219733679	82
	$\lambda_{1}\left(H_{6}\right)$			$\lambda_{N}\left(H_{6}\right)$	
1. 61889	98589243391	10^{-7}	$\times 1.08279$	9484565549	8
	$V_{1}\left(H_{6}\right)$			$V_{N}\left(H_{6}\right)$	
1			0. 00180	9482541440	515
0. 58862	85434255432		-0.05161	8253594248	58
0. 42832	72844289561		0. 34890	7752535503	9
0. 33966	18918387095		-0.90671	7684578412	7
0. 28252	35879421492		1		
0. 24233	78111228495		-0. 39374	1111493702	0
	$\lambda_{1}\left(H_{8}\right)$			$\lambda_{N}\left(H_{8}\right)$	
1. 69593	89969219494	10^{-10}	$\times 1.11153$	8966372442	4

[^0]| $V_{1}\left(H_{8}\right)$ | | | |
| :--- | :--- | :--- | :--- |
| 1. | | | |
| 0. 60050 | 42457 | 57953 | 8 |
| 0. 44267 | 15540 | 11918 | 6 |
| 0. 35437 | 04469 | 99697 | 8 |
| 0. 29691 | 85784 | 44507 | 1 |
| 0. 25618 | 09294 | 86980 | 5 |
| 0. 22562 | 93688 | 08227 | 6 |
| 0. 20179 | 01870 | 37918 | 3 |
| | | $\lambda_{1}\left(H_{10}\right)$ | |
| 1. 75191 | 96702 | 65177 | 5 |
| | $V_{1}\left(H_{10}\right)$ | | |
| 1. | | | |
| 0. 60899 | 19143 | 69650 | 3 |
| 0. 45313 | 82989 | 59421 | 5 |
| 0. 36528 | 60134 | 02151 | 0 |
| 0. 30775 | 30474 | 45501 | 6 |
| 0. 26672 | 51842 | 93050 | 8 |
| 0. 23580 | 13079 | 82484 | 3 |
| 0. 21156 | 39639 | 51540 | 1 |
| 0. 19200 | 51281 | 86119 | 1 |
| 0. 17586 | 00343 | 93102 | 9 |

$$
\left.\right\}
$$

Wayne State University Detroit 2, Michigan

1. R. A. Fairthorne \& J. C. P. Miller, "Hilbert's double series theorem and principal latent roots of the resulting matrix," MTAC, v. 3, 1949, p. 399;
2. Marvin Marcus, "Basic theorems in matrix theory," Nat. Bur. Standards, Appl. Math. Ser. No. 57, U. S. Government Printing Office, Washington, D. C., 1960.

[^0]: Received July 17, 1961.

